Designing and Building a Cybersecurity Program

Based on NIST Cybersecurity Framework

Larry Wilson lwilson@umassp.edu May, 2017

Part 1: Background and Introduction

About the Instructor

Larry Wilson, CISA, CISSP, PCI-ISA University of Massachusetts Chief Information Security Officer (CISO)

Primary Role

- Design, implement, operate, maintain the UMass Written Information Security Program (WISP)
- Based on the NIST (National Institute of Science and Technology) Cybersecurity Framework (CSF)
- Technical Controls: The CIS (Center for Internet Security) 20 Critical Security Controls
- Business Controls: The ISO 27002 Code of Practice for Information Security Management

Day to Day Responsibilities

- Manage program implementation and compliance reporting
- Communicate security program deliverables and implementation status
- Establish cybersecurity consulting practice and deliver consulting services
- Design and deliver training in cybersecurity program design, cybersecurity operations

Team Accomplishments

- 2016 ISE (Information Security Executive) Program Award Finalist
- 2013 ISE Program Award Winner

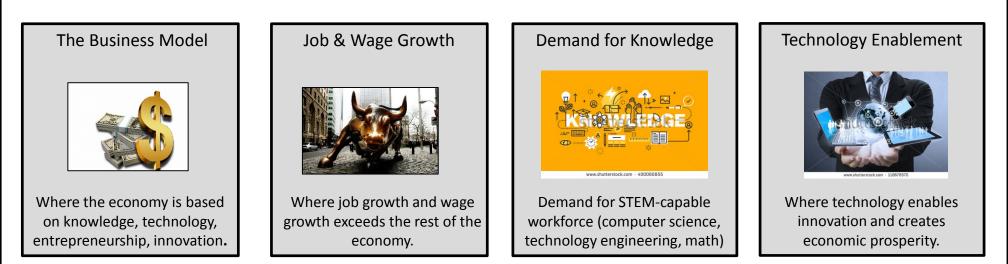
Individual Accomplishments

- 2016 Security Magazine Most Influential People in Security
- 2016 ISACA New England Achievement Award
- 2013 SANS Person Who Made a Difference Award in Cybersecurity
- 2013 ISE Individual Award Finalist

Why is Cybersecurity Important

The Why: The Innovation Economy

To reach the full potential of technology and the associated economic benefits, we need to ensure our computing assets (applications, networks, systems, endpoints, etc.) and our information assets are secure, and our digital identities are trusted.

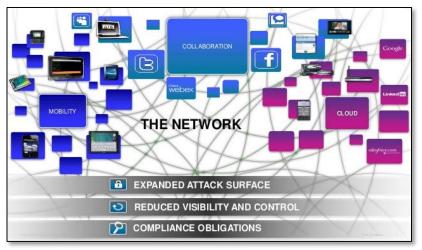

The What: Effective Cybersecurity Program and Cyber Risk Program

- Establish engineering, technical and business requirements
- Establish a Cybersecurity Program based on the NIST Cybersecurity Framework
 - Build and maintain a comprehensive technical solution 20 Critical Security Controls
 - Build and maintain a comprehensive business solution ISO 27002:2013 Controls
 - Build and maintain an executive solution Cyber Risk Program based on the 2017 AICPA Description Criteria

The Who and the How: People, Process and Technology

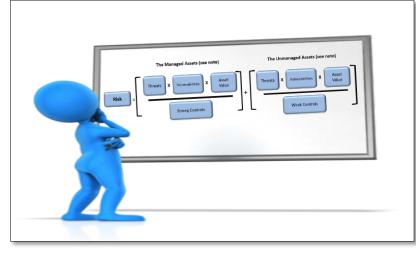
- Technology: Design, implement, manage a set of technologies that automate the technical controls
- People: Establish a skilled cyber-workforce to manage our technical, business and executive solutions
- Process: Establish roles / responsibilities and best practices at the technical / operational level, the business / management level and the executive / risk level

Today's Innovation Economy



Areas of growth of an Innovation Economy

The Key Challenges of an Innovation Economy



The Key Business Challenges

The Key Technology Challenges

The Key Risk Management Challenges

The Key Workforce Challenges

What is Vulnerable?

Cyber Attacks Could Put Humans and Infrastructure at Risk

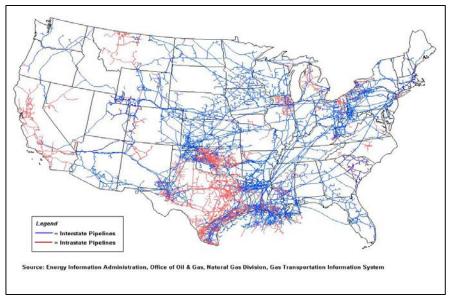
Programmable Logic Control (PLC) Vulnerabilities

Automotive Vulnerabilities (Electronic Control Unit)

Industrial Control Vulnerabilities (Programmable Control Unit)

Traffic Light Vulnerabilities (Malfunction Management Unit)

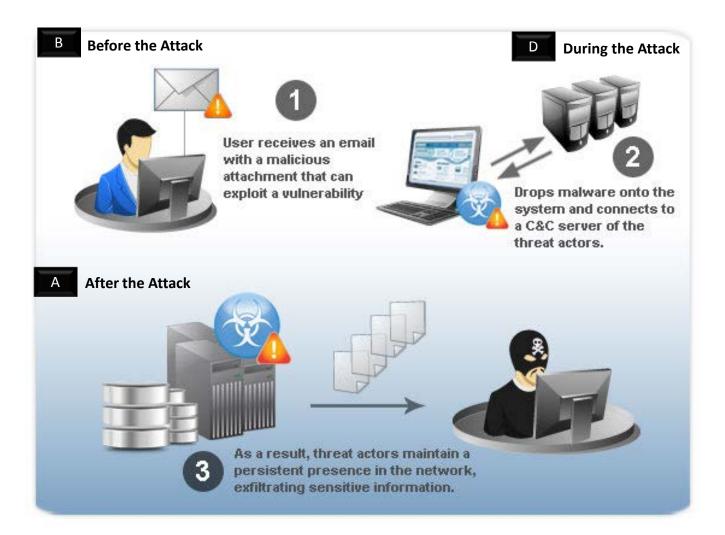
Medical Device Vulnerabilities (Electronic Control Unit)


What Has Happened Already?

The Cyberattack in Turkey: Against gas pipeline

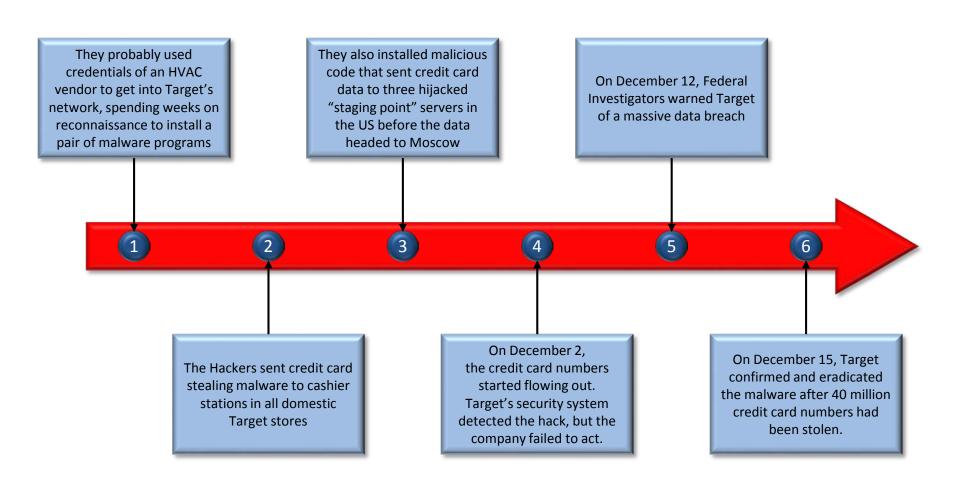
- A recently disclosed 2008 targeted attack on the majority BP-owned Baku-Tbilisi-Ceyhan pipeline in Turkey caused an explosion with flames as high as 150 feet.
- At the time, Baku-Tbilisi-Ceyhan was thought to be one of the most secure pipelines in the world.
- Hackers had shut down alarms, cut off communications and superpressurized the crude oil in the line. The main weapon at valve station 30 on Aug. 5, 2008, was a keyboard..

Could that happen here: U.S. Natural Gas Pipelines



- In the U.S., there are millions of miles of pipelines that distribute everything from oil, hazardous liquids, natural gas and chemicals.
- Many of them are approachable above ground, calling their physical security into question.
- These same pipelines are unquestionably vulnerable to cyberattacks that can inflict the same kind of serious damage as physical attacks.

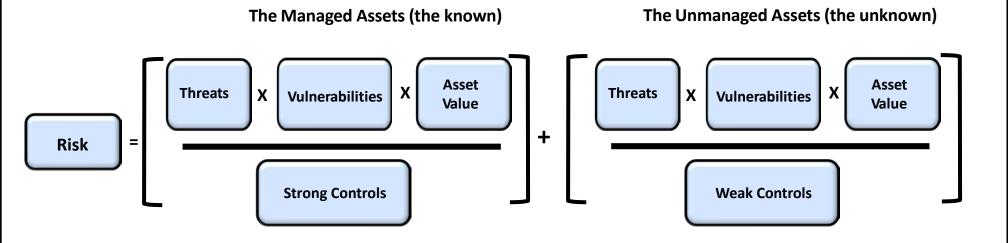
What are the Consequences?



We need to understand How Cyber Attacks Occur

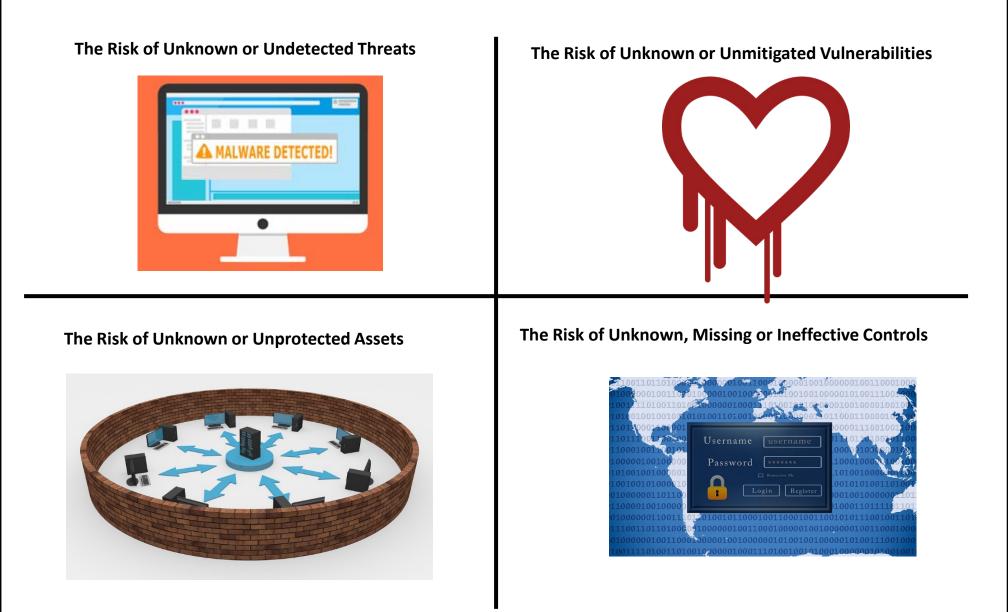


The Target Data Breach Example


How the Hackers Broke Into Target

Target's Missed Opportunities

The Risk Equation

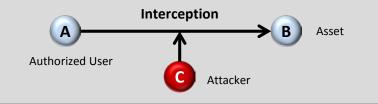

How do we calculate risk?

- 1. Threats involve the potential attack against IT resources and information assets
- 2. Vulnerabilities are weaknesses of IT resources and information that could be exploited by a threat
- 3. Asset Value is based on criticality of IT resources and information assets
- 4. Controls are safeguards that protect IT resources and information assets against threats and/or vulnerabilities (see note)
- 5. Risk is based on the likelihood and impact of a cyber-security incident or data breach

Note: Managed assets imply strong controls; unmanaged assets imply weak controls

What Are the Risks?

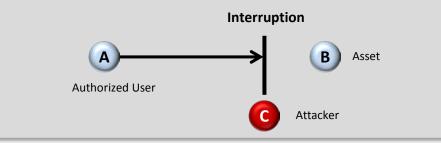
The risks are the unknowns


What are the Controls?

The controls are the safeguards

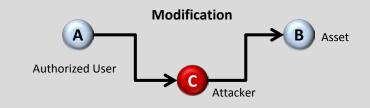
Confidentiality

Attack on Confidentiality (Unauthorized Interception) - An unauthorized individual gains access to an asset


Confidentiality Controls – Ensure only authorized users **(trusted identities)** can access the computer resources and information **(managed assets)**

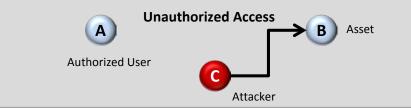
Availability

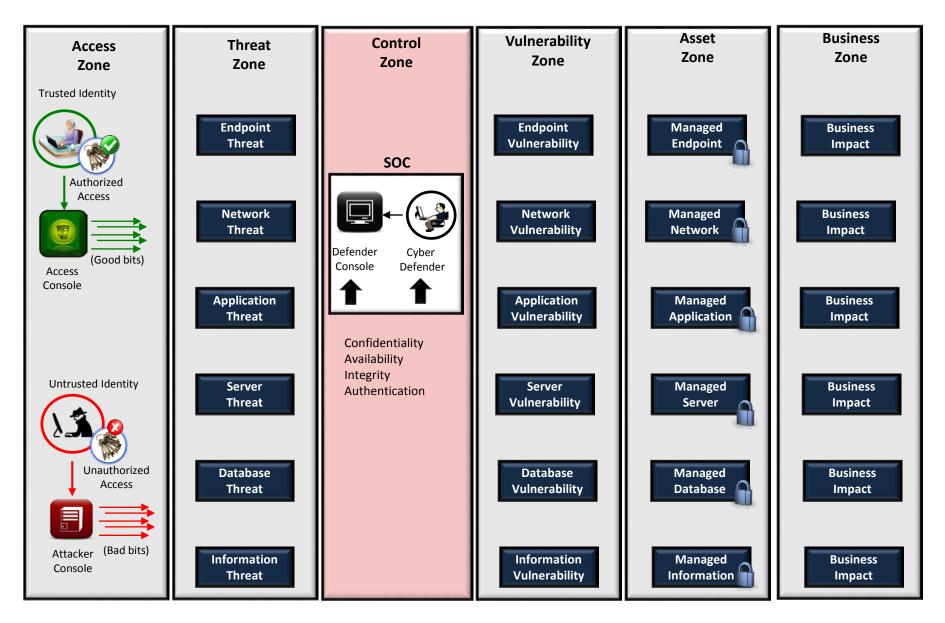
Attack on Availability (Unauthorized Interruption)- An asset becomes lost, unavailable or unusable to authorized users


Availability Controls – Ensure assets (managed assets) are available to authorized users (trusted identities) when needed

Integrity

Attack on Integrity (Unauthorized Modification) - An unauthorized individual gains access and tampers with the asset by changing values in a data file, altering a program so it performs differently, etc.


Integrity Controls - Ensure only authorized users can (*trusted identities*) modify the computer resources and information (*managed assets*)


Authentication

Attack on Authentication (Unauthorized Access) - An attacker gains unauthorized access to an asset by using credentials of a known and valid user. As a result, the attacker assumes the privileges of the valid user.

Authentication Controls – Ensure the asset (managed assets) is able to verify the identity of an authorized user (trusted identity)

The Cyber Attack Model

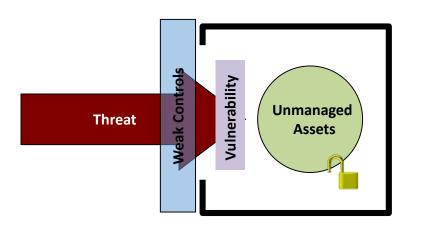
Build a Room of Controls

	BUS-01	BUS-02	BUS-03	BUS-04	BUS-05	BUS-06	BUS-07	BUS-08
	BUS-09	TEC-01	TEC-02	TEC-03	TEC-04	TEC-05	TEC-06	BUS-10
Trusted Identity	BUS-11	TEC-07	TEC-08			TEC-09	TEC-10	BUS-12
	BUS-13	TEC-11	TEC-12	1 million		TEC-13	TEC-14	BUS-14
Authorized Access	BUS-15	TEC-15	TEC-16		TEC-17	TEC-18	BUS-16	
	BUS-17	TEC-19	TEC-20	Manage	Managed Assets	TEC-21	TEC-22	BUS-18
	BUS-19	TEC-23	TEC-24	TEC-25	TEC-26	TEC-27	TEC-28	BUS-20
	BUS-21	BUS-22	BUS-23	BUS-24	BUS-25	BUS-26	BUS-27	BUS-28

To protect our critical assets against known and unknown threats

B BUS – Business Controls

T **TEC** – Technical Controls


The NIST Cybersecurity Framework (CSF)

Framework Profile Framework Core Framework Tiers Current Profile Weak Subcategories Functions Categories Controls Tier 1: Partial Current state of alignment between Ad hoc risk management ID.AM-1 to ID.AM-6 core elements and organizational Asset Management (ID.AM) Limited cybersecurity risk awareness ID.BE-1 to ID.BE-5 requirements, risk tolerance, & Business Environment (ID.BE) Low external participation ID.GV-1 to ID.GV-4 Identify Governance (ID.GV) resources ID.RA-1 to ID.RA-6 Risk Assessment (ID.RA) ID.RM-1 to ID.RM-3 Risk Management (ID.RM) Where am I today relative to the Framework? Tier 2: Risk Informed Access Control (PR.AC) PR.AC-1 to PR.AC-5 Some risk management practices Awareness and Training (PR.AT) PR.AT-1 to PR.AT-5 Increased awareness, no program Data Security (PR.DS) PR.DS-1 to PR.DS-9 Protect Informal external participation Information Protection Procedures (PR.IP) PR.IP-1 to PR.IP-11 Program Maintenance (PR.MA) PR.MA-1 to PR.MA-2 Roadmap Protective Technology (PR.PT) PR.PT-1 to PR.PT-5 Anomalies and Events (DE.AE) DE.AE-1 to DE.AE-5 Tier 3: Repeatable Detect Security Continuous Monitoring (DE.CM) DE.CM-1 to DE.CM-8 Formalized risk management Detection Processes (DE.DP) DE.DP-1 to DE.DP-5 **Target Profile** Organization-wide program Receives external partner info Desired state of alignment between Response Planning (RS.RP) RS.RP-1 core elements and organizational Communications (RS.CO) RS.CO-1 to RS.CO-5 Strong requirements, risk tolerance, & Analysis (RS.AN) RS.AN-1 to RS.AN-4 Respond Controls Mitigation (RS.MI) RS.MI-1 to RS.MI-3 resources Improvements (RS.IM) RS.IM-1 to RS.IM-2 Tier 4: Adaptive Where do I aspire to be relative to Adaptive risk management practice the Framework? Cultural, risk-informed program Recovery Planning (RC.RP) RC.RP-1 Actively shares information Improvements (RC.IM) RC.IM-1 to RC.IM-2 Recover Communications (RC.CO) RC.CO-1 to RC.CO-2

Building a Risk Model

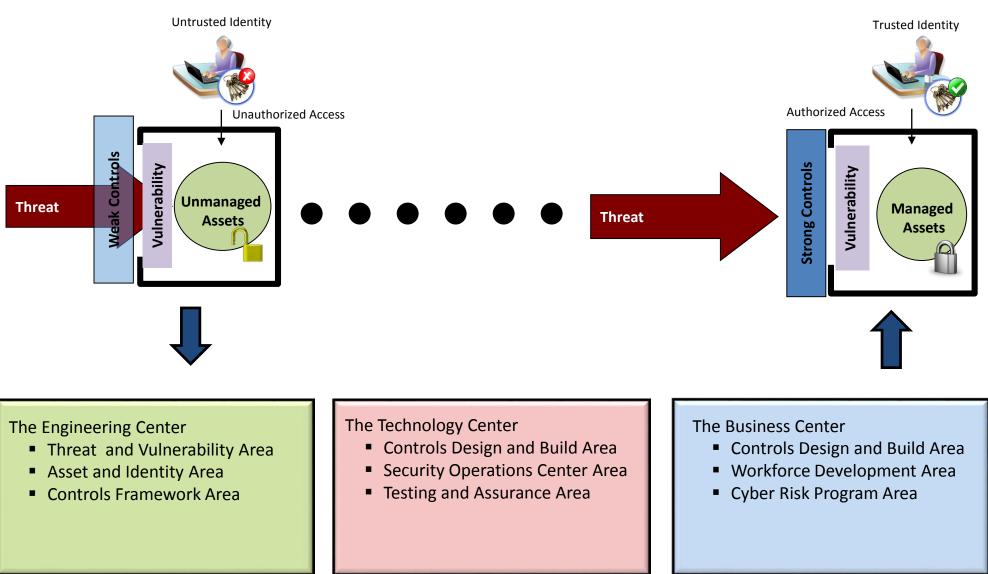
The Problem:

Unmanaged Assets have weak security controls

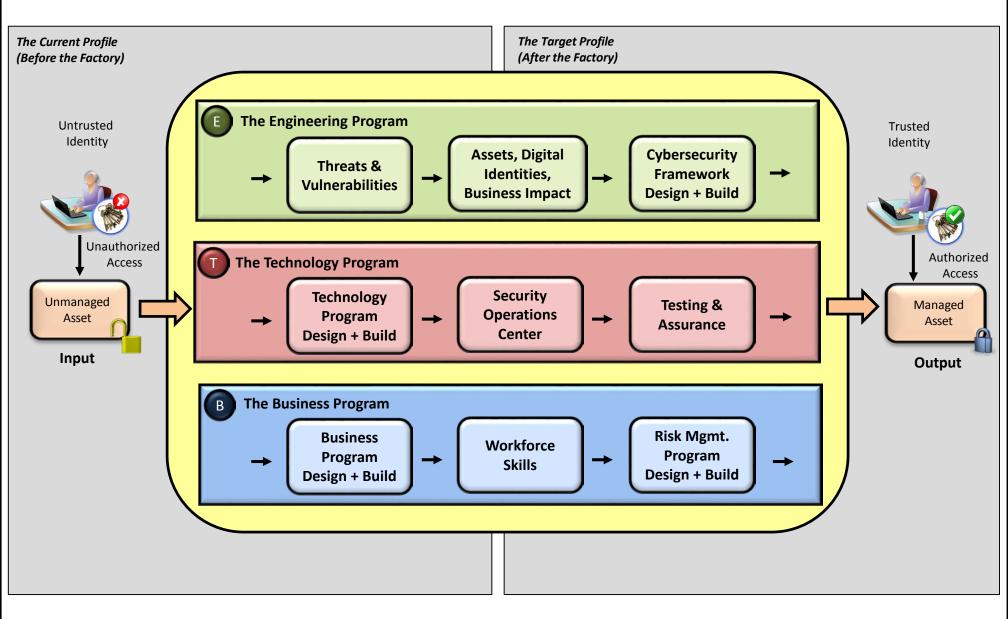
Our Unmanaged Assets are at Risk

The Solution:

Managed Assets have strong security controls



Our Managed Assets are Secure


How do we Manage Risk?

The Unsecure State: Unmanaged Assets & Untrusted Identities

The Secure State: Managed Assets & Trusted Identities

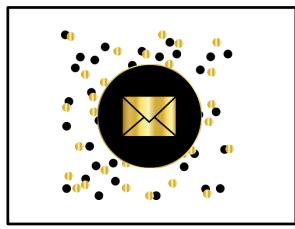
The Controls Factory Model

The Engineering Program

The Cyber Threat Landscape

Distributed Denial of Service Attack

Insider Threat


Cyber Espionage

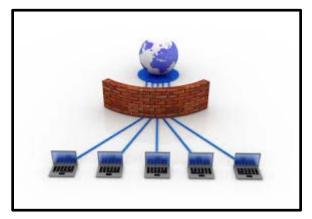
Malicious Software

Phishing Email

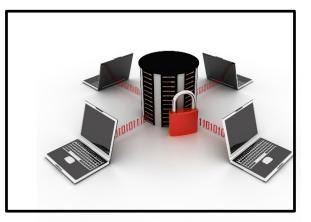
Web Based Attack

The Vulnerabilities & Exposures

Ineffective Cybersecurity Program


Weak Risk Management Program

Security Policy Deficiencies



Misconfigured Firewalls

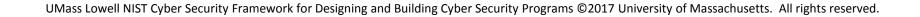
Application Vulnerabilities

Inadequate Logging & Monitoring

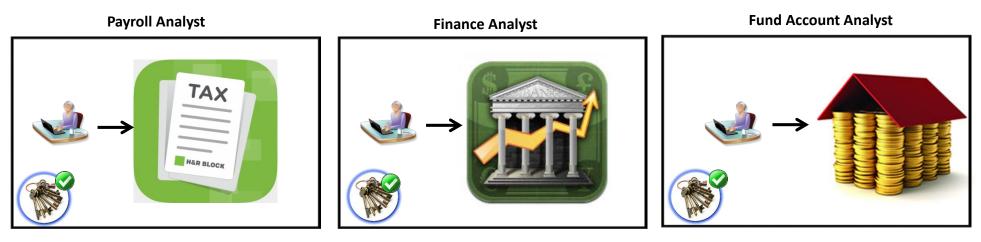
The Known & Managed Assets

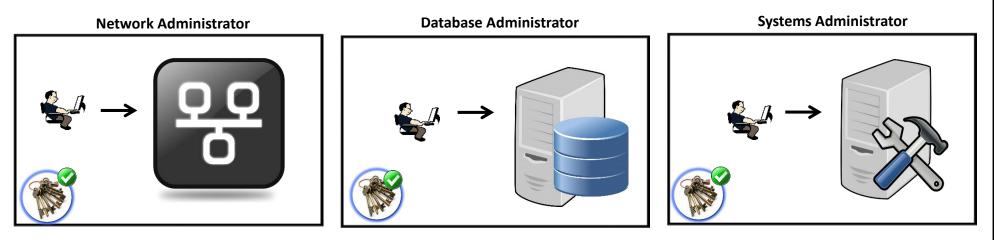
Endpoint Family Network Family Owner = Network Manager Owner = Desktop Manager Databases Servers Owner = Systems Manager Owner = Database Manager

Applications

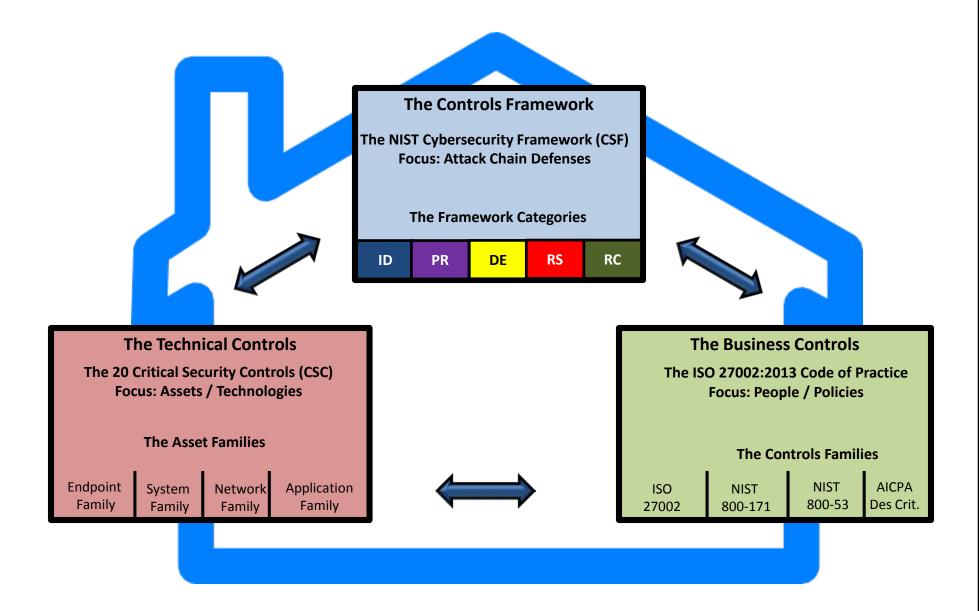

Owner = Application Manager

Information / Data


Owner = Business Process Manager



The Known & Trusted Identities


Business Roles

Technical Roles

Building a House of Controls

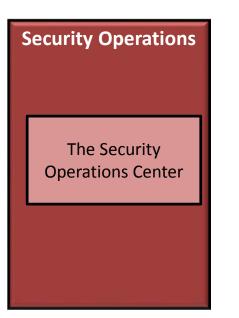
NIST Cybersecurity Framework: Mapping Controls

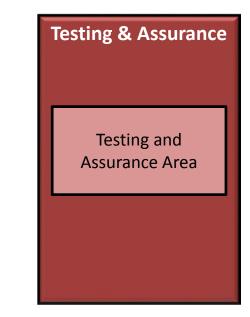
Core Functions	Categories	Technical Controls	Business Controls	•
	Asset Management	20 Critical Security Controls	ISO 27002 Code of Practice	N
	Business Environment	Not Applicable	ISO 27002 Code of Practice	
Identify	Governance	Not Applicable	ISO 27002 Code of Practice	
	Risk Assessment	20 Critical Security Controls	ISO 27002 Code of Practice	
	Risk Management	Not Applicable	Not Applicable	
	Access Control	20 Critical Security Controls	ISO 27002 Code of Practice	В
	Awareness and Training	20 Critical Security Controls	ISO 27002 Code of Practice	Before the Attack
Protect	Data Security	20 Critical Security Controls	ISO 27002 Code of Practice	
Protect	Information Protection Process	20 Critical Security Controls	ISO 27002 Code of Practice	
	Maintenance	20 Critical Security Controls	ISO 27002 Code of Practice	
	Protective Technology	20 Critical Security Controls	ISO 27002 Code of Practice	Ų
	Anomalies and Events	20 Critical Security Controls	ISO 27002 Code of Practice	
Detect	Continuous Monitoring	20 Critical Security Controls	ISO 27002 Code f Practice	
	Detection Processes	20 Critical Security Controls	ISO 27002 Code of Practice	D
	Response Planning	20 Critical Security Controls	ISO 27002 Code of Practice	During the Attack
	Communications	Not Applicable	ISO 27002 Code of Practice	
Respond	Analysis	20 Critical Security Controls	ISO 27002 Code of Practice	
	Mitigation	20 Critical Security Controls	ISO 27002 Code of Practice	
	Improvements	20 Critical Security Controls	ISO 27002 Code of Practice	
	Recovery Planning	20 Critical Security Controls	ISO 27002 Code of Practice	A
	Improvements	20 Critical Security Controls	Not Applicable	After the Attack
	Communications	20 Critical Security Controls	Not Applicable	

Technical Controls Mapping

Mapping Critical Security Controls to NIST Cybersecurity Framework (The Technical Controls)

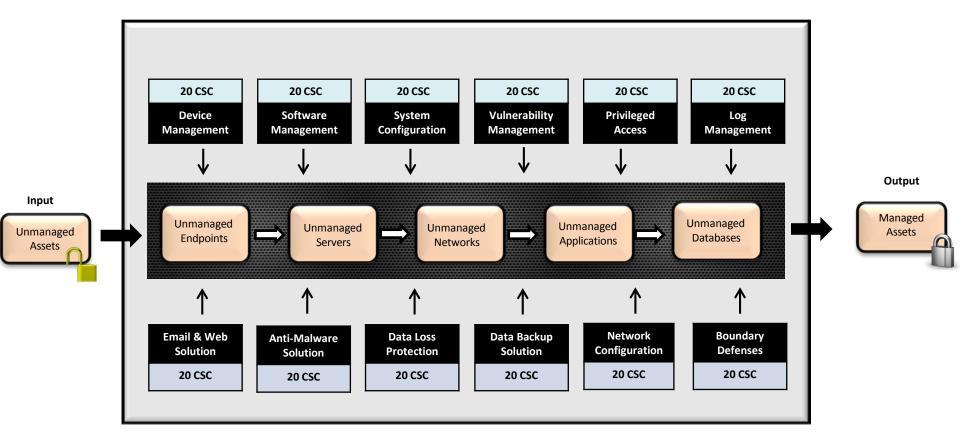
The Technical Controls)	В	В	D	Α	A
CIS Critical Security Control	Identify	Protect	Detect	Respond	Recover
CSC-01: Inventory of Authorized and Unauthorized Devices	ID.AM	PR.DS			
CSC-02: Inventory of Authorized and Unauthorized Software	ID.AM	PR.DS			
CSC-03: Secure configuration of laptops, workstations, servers		PR.IP			
CSC-04: Continuous Vulnerability Assessment and Remediation	ID.RA	PR.IP	DE.CM	RS.MI	
CSC-05: Controlled Use of Administrative Privileges		PR.AC			
CSC-06: Maintenance, Monitoring and Analysis of Audit Logs		PR.PT	DE.AE	RS.AN	
CSC-07: Email and Web Browser Protections		PR.PT			
CSC-08: Malware Defenses		PR.PT	DE.CM		
CSC-09: Limitation and Control of Ports, Protocols, and Services		PR.IP			
CSC-10: Data Recovery Capability					RC.RP
CSC-11: Secure Configuration of Network Devices		PR.IP	DE.AE		
CSC-12: Boundary Defense		PR.AC	DE.AE		
CSC-13: Data Protection		PR.DS			
CSC-14: Controlled Access Based on Need to Know		PR.AC			
CSC-15: Wireless Access Control		PR.AC			
CSC-16: Account Monitoring and Control		PR.AC	DE.CM		
CSC-17: Security Skills Assessment and Appropriate Training		PR.AT			
CSC-18: Application Software Security		PR.IP			
CSC-19: Incident Response and Management			DE.AE	RS. RP	RC.CO
CSC-20: Penetration Tests and Red Team Exercises	ID.RA			RS.IM	RC.IM


Business Controls Mapping

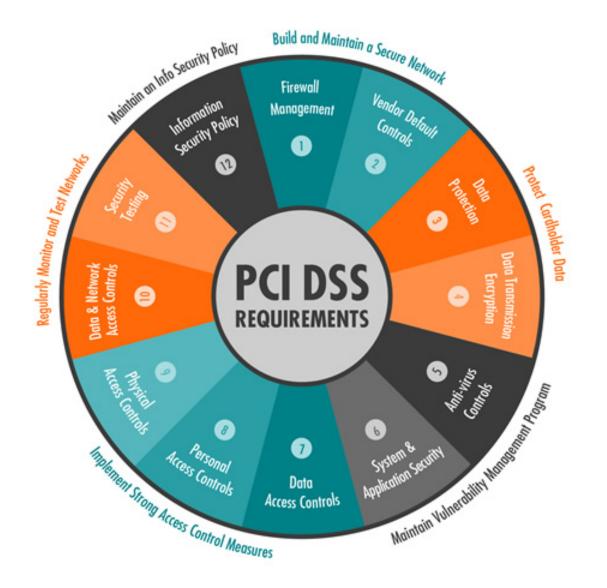

Mapping ISO 27002 Controls to NIST Cybersecurity Framework (The Business Controls)

(The Business Controls)		В	D	A	A
ISO 27002 Control	Identify	Protect	Detect	Respond	Recover
ISO-A5: Information Security Policies	ID.GV				
ISO-A6: Organization of Information Security	ID.AM	PR.AC	DE.DP	RS.CO	
ISO-A7: Human Resources Security	ID.GV	PR.AT			
ISO-A8: Asset Management	ID.AM	PR.DS			
ISO-A9: Access Control		PR.PT			
ISO-A10: Cryptography		PR.AC			
ISO-A11: Physical and Environmental Security	ID.BE	PR.DS			
ISO-A12: Operations Security	ID.RA	PR.PT	DE.CM	RS.AN	
ISO-A13: Communications Security	ID.AM	PR.DS			
ISO-A14: System Acquisition, Development and Maintenance		PR.DS	DE.DP		
ISO-A15: Supplier Relationships	ID.BE	PR.MA	DE.CM		
ISO-A16: Information Security Incident Management		PR.IP	DE.AE	RS.RP	RC.RP
ISPO-A17: Information Security Aspects of Business Continuity Management	ID.BE	PR.IP			
ISO-A18: Compliance with Internal and External Requirements	ID.GV	PR.IP	DE.DP		

The Technology Program



The Technology System: The 20 Critical Security Controls

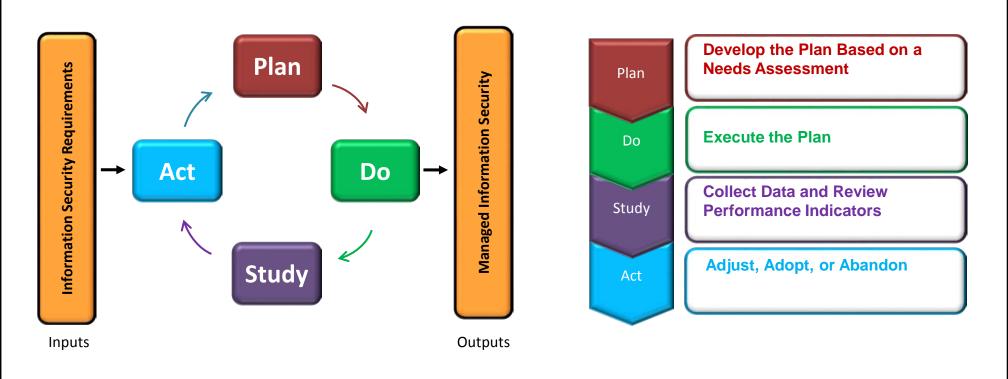

Used with permission from Center for Internet Security (CIS)

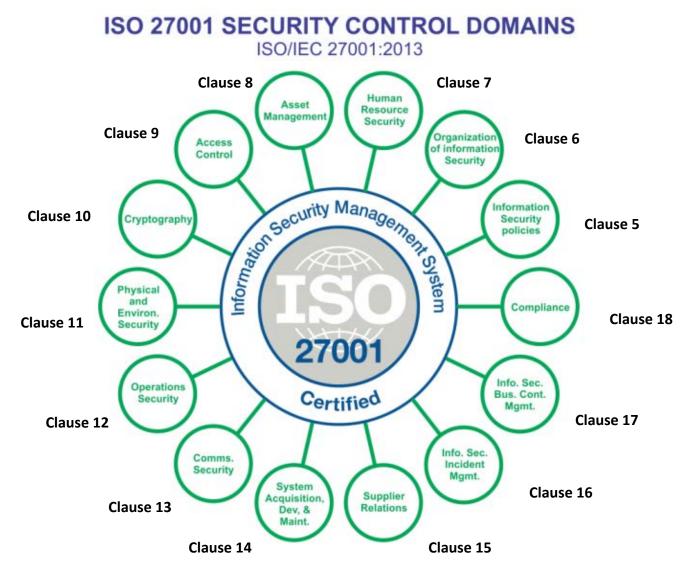
Applying the Technical Controls


Cybersecurity Technology Solutions and Managed Services

Technology Testing & Assurance

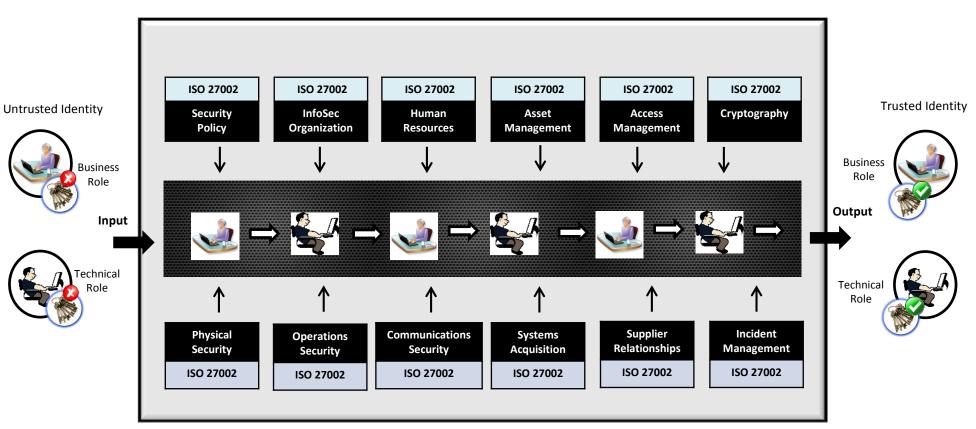
Used with permission from Payment Card Industry Data Security Standard


The Business Program

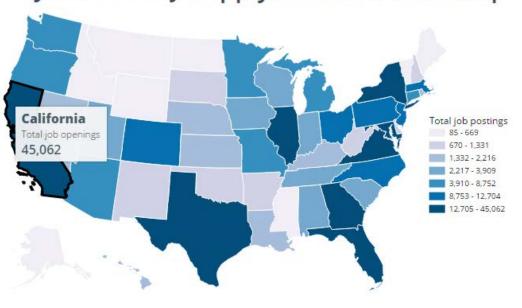

Workforce Development	Cyber-Risk
Workforce Development Area	Cyber Risk Management

The Business System: ISO 27001

Information Security Management System (ISMS)



The Business Controls: ISO 27002:2013


Used with permission of ANSI on behalf of ISO

Applying the Business Controls

Cybersecurity Business Solutions and Skilled Workforce

Cyber Seek Website

Cybersecurity Supply/Demand Heat Map

Pennsylvania Job Postings

Cybersecurity Job Openings :	8,874
Employed Cybersecurity Workforce:	23,897

Postings by NCWF Category:

Securely Provision (SP):	4,332
Operate and Maintain (OM):	6,096
Oversee and Govern (OG):	2,572
Protect and Defend (PR):	2,904
Analyze (AN):	3,462
 Collect and Operate (CO): 	1,334
Investigate (IN):	575

Certification Holders

•	Security+:	4,165
•	CIPP:	159
•	CISSP:	2,059
•	CISA:	1,196
•	CISM:	314

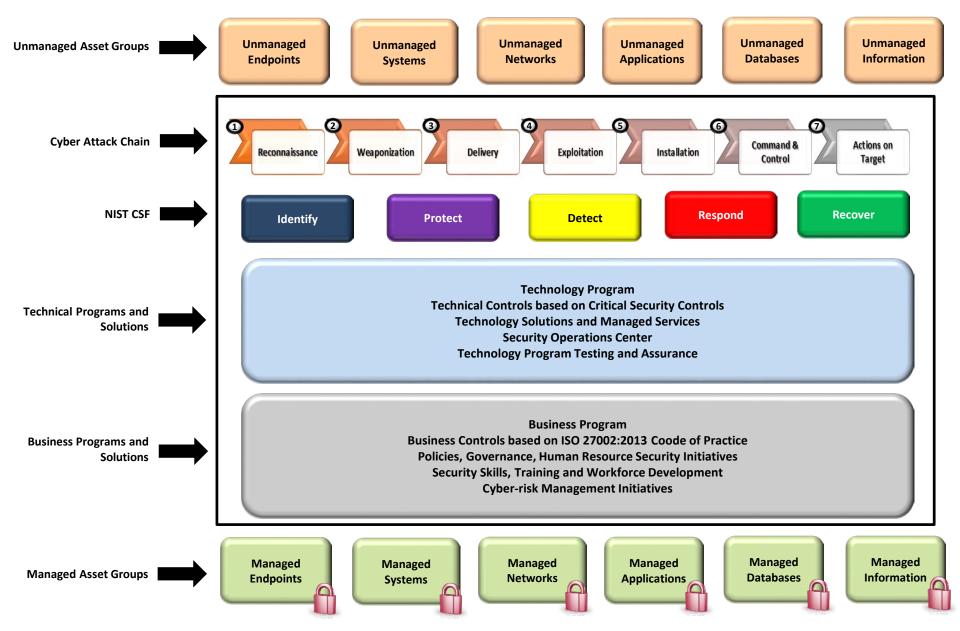

Cybersecurity talent gaps exist across the country. Closing these gaps requires detailed knowledge of the cybersecurity workforce in your region. This interactive heat map provides a granular snapshot of demand and supply data for cybersecurity jobs at the state and metro area levels, and can be used to grasp the challenges and opportunities facing your local cybersecurity workforce.

The NICE Workforce Framework

No.	Workforce Categories	Workforce Category Descriptions
1	Securely Provision (SP)	Conceptualizes, designs, and builds secure information technology (IT) systems, with responsibility for aspects of systems and/or networks development.
2	Operate and Maintain (OM)	Provides the support, administration, and maintenance necessary to ensure effective and efficient information technology (IT) system performance and security.
3	Oversee and Govern (OV)	Provides leadership, management, direction, or development and advocacy so the organization may effectively conduct cybersecurity work.
4	Protect and Defend (PR)	Identifies, analyzes, and mitigates threats to internal information technology (IT) systems and/or networks.
5	Analyze (AN)	Performs highly specialized review and evaluation of incoming cybersecurity information to determine its usefulness for intelligence.
6	Collect and Operate (CO)	Provides specialized denial and deception operations and collection of cybersecurity information that may be used to develop intelligence.
7	Investigate (IN)	Investigates cybersecurity events or crimes related to information technology (IT) systems, networks, and digital evidence.

The National Cybersecurity Workforce Framework provides a blueprint to categorize, organize, and describe cybersecurity work into Specialty Areas, tasks, and knowledge, skills, and abilities (KSAs). The Workforce Framework provides a common language to speak about cyber roles and jobs and helps define personal requirements in cybersecurity. The Workforce Framework organizes cybersecurity into seven high-level Categories, each comprised of several Specialty Areas.

AICPA Cybersecurity Risk Management Program (DRAFT)


The American Institute of CPAs (AICPA) is working to develop a voluntary, market-based solution to evaluating cybersecurity risk management that could enhance public trust in the effectiveness of a company's cybersecurity programs.

Used with permission on ANSI on behalf of ISO

AICPA Cybersecurity Risk Management Program (DRAFT)

- The AICPA is developing a common foundation to assess the effectiveness of an entity's cybersecurity risk management program.
- The primary objective is to propose a reporting framework through which organizations can communicate useful
 information regarding their cybersecurity risk management programs to stakeholders.
- The development of a common set of criteria will pave the way for the introduction of a new engagement to assist boards of directors, senior management, and other pertinent stakeholders as they evaluate the effectiveness of an entity's cybersecurity risk management program.
- The existence of multiple, disparate frameworks and programs for evaluating security programs and their effectiveness, as well as different stakeholders' preferences for each, has created a chaotic environment that only increases the burden on organizations trying to communicate how they design, implement and maintain an effective cybersecurity risk management program.
- The AICPA's cybersecurity engagement will be a consistent, market-driven approach to examine and report on an entity's cybersecurity measures that addresses the information needs of a broad range of users.

Lesson 2: The Controls Factory Model

Questions?

